Large Scale Identification and Categorization of Protein Sequences Using Structured Logistic Regression

نویسندگان

  • Bjørn P. Pedersen
  • Georgiana Ifrim
  • Poul Liboriussen
  • Kristian B. Axelsen
  • Michael G. Palmgren
  • Poul Nissen
  • Carsten Wiuf
  • Christian N. S. Pedersen
چکیده

BACKGROUND Structured Logistic Regression (SLR) is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem. RESULTS Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane topology of the identified P-type ATPases. CONCLUSIONS Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases pinpoints new and interesting targets for further biochemical characterization and structural analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensembles of Sparse Multinomial Classifiers for Scalable Text Classification

Machine learning techniques face new challenges in scalability to large-scale tasks. Many of the existing algorithms are unable to scale to potentially millions of features and structured classes encountered in web-scale datasets such as Wikipedia. The third Large Scale Hierarchical Text Classification evaluation (LSHTC3) evaluated systems for multi-label hierarchical categorization of Wikipedi...

متن کامل

The Impact of Business Environment on the Survival of Small Scale Businesses in Nigeria

the best deal. Nowhere is more real than today business environment which affect the success or otherwise of any business venture. Several authors have attributed failure of businesses particularly small and medium scale enterprises to various factors ranging from training of the entrepreneur to exposure and experience while some analysts opined that business environment could impact on small a...

متن کامل

Data Mining for Identification of Forkhead Box O (FOXO3a) in Different Organisms Using Nucleotide and Tandem Repeat Sequences

 Background: Deregulation of FOXO3a gene which belongs to Forkhead box O (FOXO) transcription factors, can cause cancer (e.g. breast cancer). FOXO factors have important role in ubiquitination, acetylation, de-acetylation, protein-protein interactions and phosphorylation. Understanding the regulation and mechanisms of FOXO3a can lead to cancer treatment. The aim of this study recent association...

متن کامل

Large-Scale Bayesian Logistic Regression for Text Categorization

Logistic regression analysis of high-dimensional data, such as natural language text, poses computational and statistical challenges. Maximum likelihood estimation often fails in these applications. We present a simple Bayesian logistic regression approach that uses a Laplace prior to avoid overfitting and produces sparse predictive models for text data. We apply this approach to a range of doc...

متن کامل

Domain Architecture Comparison for Multidomain Homology Identification

Homology identification is the first step for many genomic studies. Current methods, based on sequence comparison, can result in a substantial number of mis-assignments due to the similarity of homologous domains in otherwise unrelated sequences. Here we propose methods to detect homologs through explicit comparison of protein domain content. We developed several schemes for scoring the homolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014